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Abstract 
 
There are large between- and within-country variations in COVID-19 death rates. Some very low death 
rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of 
eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 
(Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-
interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, 
sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and 
cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, 
PPARg: Peroxisome proliferator-activated receptor, NFkB: Nuclear factor kappa B, ERK: Extracellular 
signal-regulated kinases and eIF2a: Elongation initiation factor 2α). They may as a result be important 
in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-
Angiotensin-II-AT1R axis (AT1R) pathway. Interestingly, geographical areas with very low COVID-19 
mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting 
to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a 
significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may 
restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of 
COVID-19 severity. 

 
Abbreviations 
 
ACE: Angiotensin converting enzyme 
AKT: Protein kinase B Ang II: Angiotensin II 
AT1R: Angiotensin II receptor type 1 
COVID-19: Coronavirus 19 disease 
DNA: Desoxyribonucleic acid 
EGCG: Epigallocatechin gallate   
eIF2a: Elongation initiation factor 2α 
ER: Endoplasmic reticulum 
ERK: Extracellular signal-regulated kinases 
GI: Gastro-intestinal  
HCV: Hepatitis C virus 
HIV: Human immunodeficiency virus 
IFN: Interferon 
IR: Insulin resistance 
Keap1: Kelch-like ECH-associated protein 1 
LAB: Lactic acid bacilli 
mTOR: Mammalian target of rapamycin 
mTORC: mTOR complex 
MAPK: Mitogen-activated protein kinases 

NADPH: Nicotinamide adenine dinucleotide 
phosphate   

NF-κB: Nuclear factor kappa B 
Nox: NADPH oxydase 
Nrf2: Nuclear factor (erythroid-derived 2)-like 2 
PI3K: Phosphoinositide 3-kinase 
PPAR: Peroxisome proliferator-activated receptor 
PERK: Protein kinase R (PKR)-like endoplasmic 

reticulum kinase   
PKR: protein kinase R 
RAAS: Renin-Angiotensin-Aldosterone system 
ROS: Reactive oxygen species 
RSV: Respiratory syncytial virus 
SARS: Severe acute respiratory syndrome 
SARS-Cov-2: Severe acute respiratory syndrome 

coronavirus 2 
STING: Signalling effector stimulator of interferon 

genes 
T2D: Type 2 diabetes 
UPR: Unfolded protein response 
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Introduction 

Large differences in COVID-19 death rates exist between countries and between regions of the same 
country. Some very low death rate geographical areas such as Eastern Asia, Central Europe, the Balkans 
and Africa have a common feature: the consumption of large quantities of fermented foods (1-3) in 
which lactic acid bacteria are important. Notwithstanding the fact that data from ecological studies need 
to be interpreted with caution, fermented vegetables or cabbage have been found to be associated with 
low COVID-19 death rates in European countries (3-5). 

Reactive oxygen species (ROS) exert beneficial and toxic effects on cellular functions. Nrf2 is a 
pleiotropic transcription factor protecting against oxidative stress. It expresses  a wide array of genes 
involved in immunity and inflammation, including antiviral actions (6). Several Nrf2-interacting natural 
compounds (e.g. berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, 
sulforaphane) and lactobacilli acting as antioxidants are effective against insulin resistance associated 
diseases (7). They may be important in the mitigation of COVID-19 (3, 7, 8), acting through the 
endoplasmic reticulum (ER) (9-11) or ACE-Angiotensin-II-AT1R axis (AT1R) pathway (2, 3) and 
leading to insulin resistance (IR), endothelial damage, lung injury and cytokine storm.  They may also 
interact with SARS-CoV-2 by other pathways involved in IR that may be Nrf2-dependent or -
independent (9-11).   

Obesity is a very important risk factor for COVID-19 severity (12) and is often associated with diet. 
There may be interactions between obesity, diet and COVID-19, possibly linked with Nrf2 (13). 

The present rostrum follows the first two papers on diet and COVID-19 (2, 3).  Specifically, we seek to 
(i) expand discussion on the role of Nrf2-interacting natural nutrients in IR, (ii) assess the mechanisms 
on ER stress and the AT1R pathway, and (iii) understand how Nrf2-interacting nutrients can interplay 
to mitigate COVID-19.  

1- Nrf2-interacting nutrients 

The most common Nrf2 nutrients include berberine, curcumin, epigallocatechin gallate (EGCG), 
genistein, quercetin, resveratrol, sulforaphane mostly found in vegetables and fruits, and Lactobacillus 
in fermented foods (Table 1). 

Table 1: origin of Nfr2-interacting nutrients 

Nutrient  Foods containing nutrient 

Berberine benzylisoquinoline alkaloid 
 

European barberry, goldenseal, goldthread, Oregon grape, 
phellodendron, goldenseal, poppy, and tree turmeric 

Curcumin Curcuminoid (phenol) Turmeric 

EGCG Catechin (polyphenol) Green and white tea  

Genistein Soy isoflavone Soy-based foods including tofu, tempeh and miso 

Lactobacillus Lactic acid bacteria Fermented foods 

Quercetin Flavonoid group of 
polyphenols 

Found in many fruits (cranberries, lingonberries, black plums), 
vegetables (broccoli, capers, kale, red onion, radish, sorel, 
watercress), leaves (fennel), seeds, and grains  

Resveratrol Stilbenoid (phenol) Skin of grapes, blueberries, raspberries, mulberries and peanuts 
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Sulforaphane Isothiocyanate Cruciferous vegetables such as broccoli, Brussels sprouts, 
and cabbages 

EGCG: Epigallocatechin gallate,   

Herbs, fruits or vegetables such as garlic (14) or kiwi can also have antioxidant activities mediated by 
Nrf2 (7).   

Micronutrients such as Zinc, Chromium, Selenium (15)  and vitamin D (16) possess antioxidant 
activities associated, at least partly, with activation of Nrf2.  

2- Cellular response to SARS-CoV-2 

2-1- Endoplasmic reticulum stress response and Coronavirus 

The coronavirus infection triggers ER stress responses in infected cells associated with increased levels 
of reactive oxygen species (ROS) and unfolded protein response (UPR) (17-19).  As a general response, 
ER stress leads to PERK phosphorylation of the elongation initiation factor 2α (eIF2α) and of Nrf2 (20). 
Activated PERK inactivates eIF2α, leading to a decrease in overall protein synthesis. Phosphorylation 
of PKR and PERK has been observed in SARS-CoV-2-infected cells (21). ERK/MAPK and 
PI3K/AKT/mTOR signalling responses play important roles in Middle East respiratory syndrome 
coronavirus (MERS-CoV) infection (22). The key role in the synthesis of proteins essential for these 
mechanisms belongs to mTOR (mammalian target of rapamycin) complexes and signalling pathways 
involved in mTOR regulation including eIF2α (23). mTOR is a serine/threonine protein kinase in the 
PI3K-related kinase (PIKK) family that forms the catalytic subunit of two distinct protein complexes, 
known as mTOR Complex 1 (mTORC1) and 2 (mTORC2). The mTOR pathway functions as a central 
regulator of cell metabolism, growth, proliferation, and survival. mTORC1 mainly functions as a 
nutrient/energy/redox sensor and controls protein synthesis, lipid metabolism, and organelle biogenesis 
(24).  mTORC2 promotes the activation of insulin receptors and insulin-like growth factor 1 receptors. 
mTORC1 and C2 complexes are activated by nutrients, growth factors, and inflammatory mediators.  

ER stress and sustained UPR signalling are major contributors to the pathogenesis of several diseases, 
including inflammatory disorders and viral infections (25) and can increase the severity of these events 
(26).  ER stress has an important role in cardiovascular and metabolic disease, obesity and in diabetes 
(27, 28) and pancreatic ß-cell dysfunction, often through mTOR (29). Oxidative stress is counter-
balanced by complex antioxidant defence systems regulated by a series of multiple pathways, including 
the UPR, to ensure that the response to oxidants is adequate. Nrf2, interrelated with the UPR sensor 
called the pancreatic endoplasmic reticulum kinase, is a regulator of cellular resistance to oxidants (20, 
30). 

A recent study showed a disruption of mTOR signalling with increased levels of mTOR and a down-
regulation of eIF2 signalling in multiple cellular compartments of severe COVID-19 patients when 
compared to patients who recovered (31). 

2-2- AT1R-associated effects 

Angiotensin II (AngII) is the predominant Renin-Angiotensin-Aldosterone system (RAAS) component 
contributing to IR (32). The angiotensin-converting enzyme 2 (ACE2) receptor is part of the dual RAAS 
system consisting of an AT1R axis and an ACE-2-Angiotensin-(1-7)-Mas axis. AT1R is involved in most 
of the effects of Ang II, including oxidative stress generation (33), which in turn upregulates AT1R (34). 
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In metabolic disorders and with older age, there is an upregulation of the AT1R axis leading to pro-
inflammatory, pro-fibrotic effects in the respiratory system, endothelial damage and IR (35). SARS-
CoV-2 binds to its receptor ACE2 and exploits it for entry into the cell.  The ACE2 downregulation, as 
a result of SARS-CoV-2 binding, enhances the AT1R axis (36) likely to be associated with IR (37, 38), 
but also with inflammation (39) and severe outcomes of COVID-19. Nrf2 is the most potent antioxidant 
in humans and can block the AT1R axis (6). 

2-3- Cross-talk between the renin-angiotensin-aldosterone system (RAAS) and 
endoplasmic reticulum (Figure 1) 

Figure 1: Interactions between the renin-angiotensin-aldosterone system and the endoplasmic 
reticulum in COVID-19 

 

Several studies have shown an interaction of RAAS and ER in insulin resistance. Ang-II increases ER 
stress in adipose tissue (40). ACE2 regulates intramuscular fat by improving ER and mitochondrial 
function (41). On the other hand, Ang 1-7 protects against Ang II-induced ER stress and endothelial 
dysfunction via the Mas receptor (42). These mechanisms appear to be of great importance in COVID-
19 and propose an interaction between ER stress and AT1R/Mas pathways with Nrf2 at the centre of the 
regulatory mechanism. 

Moreover, in addition to reducing the production of infectious virions, the inhibition of ER glucosidases 
also impairs the entry of selected viruses via a post-receptor-binding mechanism (43). 

2-4- Nrf2 in cytokine storm, endothelium and lung damage 

The Nrf2 signalling pathway regulates anti-inflammatory gene expression and inhibits the progression 
of inflammation (44). In particular, the upregulation of Nrf2 signalling inhibits the overproduction of 
IL-6, pro-inflammatory cytokines, and chemokines as well as limiting the activation of NFĸB. 

Failure to protect against oxidative stress-induced cellular damage leads to endothelial dysfunction in 
cardiovascular diseases and other pathologies associated with metabolic syndrome. Several antioxidant 
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pathways are involved in cellular redox homeostasis, among which the Nrf2 signalling pathway is one 
of the most prominent (45).  

Nrf2 induces cellular rescue pathways against oxidative pulmonary injury, abnormal inflammatory and 
immune responses, as well as apoptosis. The Nrf2 pathway can protect against various lung injuries 
including acute lung injury and acute respiratory distress syndrome (46). 

 2.5. Complexity of the anti-oxidant response 

It is clear that Nrf2 is only one mechanism of the anti-oxidant stress and that multiple products can act 
on the anti-oxidant stress of COVID-19. As an example, sulforaphane protects against acetaminophen-
induced hepatotoxicity (47). Its anti-oxidant and anti-inflammatory activity may be enhanced in vitro 
by combining it with some medications used in COVID-19 such as acetaminophen (48). 

3- Nrf2-interacting nutrients and COVID-19    

Obesity, possibly hypertension, type 2 diabetes (T2D) and ageing all represent risk factors for severe 
COVID-19 associated with cytokine storm and IL-6, endothelial damage in different organs and lung  
damage.  

IR is a pathological condition in which cells fail to respond normally to the hormone insulin. Major 
mechanisms of IR include oxidative stress, inflammation, insulin receptor mutations, endoplasmic 
reticulum stress, and mitochondrial dysfunction (49). In COVID-19, IR can be induced by at least ER 
stress or the AT1R pathways. IR is a key component of the metabolic syndrome, a clustering of at least 
three of the five following medical conditions: abdominal obesity (50), high blood pressure (51), high 
blood sugar, high serum triglycerides, and low serum high-density lipoprotein (HDL) (52). The 
metabolic syndrome is associated with the risk of developing cardiovascular disease and T2D (53, 54). 
All nine Nrf2-interacting nutrients had some effect – although sometimes weak - against obesity, 
hypertension and T2D (Table 2).  

Table 2: Effect of Nrf2-interacting nutrients on diseases associated with oxidative stress  

Search strategy: For this table, in order to compare the mechanisms of action and properties of Nrf2-interacting 
nutrients, a PubMed search was initiated. This was not a systematic review, but an attempt to assess 
whether the impact on the disease has been described.  

1. We searched PubMed using the display option “best matches”. 
2. We first searched “systematic reviews” by PubMed for the different nutrients and we collected the first 

“best match” systematic review related to the question. 
3. If there was no systematic review, we searched for “reviews” and we collected the first “best match” review 

related to the question. 
4. If there was no review, we searched for papers and we collected the first “best match” paper related to the 

question. 
 

 Insulin resistance Lung 
injury 

IL-6 
cytokines AT1R Obesity HTA T2D Endothelium 

damage 
Ageing 

Berberine  (55, 56) (56) (56-58) (59) (60) (57) (57) 
Curcumin (61) (62, 63) (64) (65) (66) (67) (68, 69) (70) 
EGCG (71) (63) (72) (73) (72) (67) (74, 75) (76) 
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Genistein (77, 78) (79) (80) (81) (80) (67) (82) (83) 
Lactobacillus  (84, 85) (86) (87) (88) (89) (90) (91) 
Quercetin  (62) (92) (93) (72) (67) (94) (95) 
Resveratrol (96) (62, 63) (97) (98) (99) (67) (100) (101) 
Sulforaphane  (102) (103) (103) (104) (67) (105) (106) 

EGCG: Epigallocatechin gallate  

IR is frequently associated with endothelial dysfunction and has been proposed to play a major role in 
cardiovascular (107), kidney (108) or cerebrovascular diseases (109). All nine Nrf2-interacting nutrients 
had an effect against endothelial damage. 

Ageing is associated with IR (110) and all nine Nrf2-interacting nutrients had an effect on ageing. All 
nine Nrf2-interacting nutrients reduce IL-6 and cytokines. 

4- Mechanisms of Nrf2-interacting nutrients in COVID-19   

Most Nrf2-interacting nutrients have an action on mTOR, PPARg, NFkB, ERK and eIF2a (Table 3). 

Table 3: Mechanisms involved in the antioxidant effects of Nrf2-interacting nutrients 

The search strategy used in Table 2   was applied in an attempt to assess whether a mechanism of action could 
be identified 

 Nrf2 mTOR PPARg NFkB ERK eIF2a 
Berberine (57) (60) (59) (111) (60) (112) 

Curcumin (67, 113) (113, 114) (113) (113) (113) (115) 

EGCG (67) (114) (116) (117, 118) (118) (119) 

Genistein (67) (120) (121) (122) (123) (124) (125) 

Lactobacillus (126) (127) (128) (126) (129)  

Quercetin (67) (130) (121) (131) (132) (133) 

Resveratrol (67) (114, 134) (121) (122) (96) (135) 

Sulforaphane (67) (136, 137) (103) (103) (138) (139) 

EGCG : Epigallocatechin gallate   

4-1- Anti-viral effects 

Nrf2-interacting nutrients have large antiviral activities demonstrated in humans and animals (Table 4). 

Table 4: Antiviral effects of Nrf2-interacting nutrients 

The search strategy used in Table 2 was applied in an attempt to assess whether anti-viral or anti-COVID 
properties have been described 

 Antiviral COVID STING 
    
Berberine (111) (111)  
Curcumin (140) (141-144)  
EGCG (145) (146-149) (150) 
Genistein (151) (152)  
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Lactobacillus (153) (153, 154)  
Quercetin (155) (156-160)  
Resveratrol (161) (162-166)  
Sulforaphane (167)  (168) 

Berberine through NFkB and MAPK pathways has an anti-viral activity on several viruses, and 
potentially against SARS-CoV-2 (111). Curcumin can block the entry of viruses into cells or its 
replication in the cell (140). It acts on NFkB (169) or MAPK (170). EGCG has multiple antiviral 
properties possibly though MAPK (171).   

The suppressive effects of EGCG on viral replication were abolished in cells with knocked-
down Nrf2 expression (172). siRNA-mediated depletion of Nrf2 boosted HIV infectivity in primary 
macrophages and reduced the anti-viral effects of sulforaphane (173). In a murine model, RSV-induced 
bronchopulmonary inflammation, epithelial injury, and mucus cell metaplasia as well as nasal epithelial 
injury were significantly greater in Nrf2(-/-) mice than in Nrf2(+/+) mice. Sulforaphane pre-treatment 
significantly limited lung RSV replication and virus-induced inflammation in Nrf2(+/+) but not in 
Nrf2(-/-) mice. This effect may be mediated though NFkB (174). Sulforaphane through Nrf2 
significantly suppressed the hepatitis C virus (HCV) protein and RNA levels in HCV replicon cells and 
infectious system (175). Caffeic acid could modulate Keap1/Nrf2 interaction via increasing p62 
expression, leading to the stabilization of Nrf2 and HO-1 induction, and an elicit IFNα antiviral response 
to suppress HCV replication (176). HCV genome replication was also suppressed in HCV sub-genomic 
replicon-bearing cells by bardoxolone methyl (BARD), an Nrf2 activator (177).  

Type I IFNs (IFNα and -β) are central to immune-protection against viral infection (178). A balanced 
production of type I IFNs is needed for the protection against virus, but excessive production is a potent 
driver of pathology (178). Intracellular DNA and RNA sensors are essential in the innate immune 
response to viruses, causing the secretion of type I IFNs, cytokines and chemokines from infected 
cells. Viral cytosolic DNA is recognized by DNA sensors such as cyclic GMP-AMP synthase (cGAS) 
and its downstream signalling effector stimulator of interferon genes (STING) (179). Sulforaphane 
through Nrf2 activation decreases STING expression and responsiveness to STING agonists while 
increasing susceptibility to infection with DNA viruses (168).  Reduction of STING expression by Nrf2 
is mechanistically distinct from how Nrf2 reduces the release of the pro-inflammatory cytokines IL-1β 
and IL-6 (168). Nrf2 negatively regulates Type I INF responses and increases susceptibility to herpes 
genital infection in mice (180). Itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to 
limit inflammation and modulate type I IFNs (181). 

4-2- mTOR and eIF2a 

Several Nrf2-interacting nutrients act through mTOR or eIF2a.  The insulin-sensitizing action of 
berberine was related to reducing ER stress in Hep G2 cells. The levels of phosphorylation both on 
PERK and eIF2a were inhibited in cells pretreated with berberine (112). In an IR animal model, 
curcumin was found to act on eIF2a (115). The induction of the ER stress pathway by green tea EGCG 
in colorectal cancer cells is mediated by the activation of PERK (182). The proteasome inhibitors 
Bortezomib (BZM) and MG132 trigger cancer cell death via induction of ER stress and UPR. EGCG 
antagonizes BZM toxicity by exacerbating the activation of autophagy and eIF2α up-regulation (119).  
In rats, genistein protects against acute pancreatitis via the activation of an apoptotic pathway mediated 
through activation of multiple ER stress-related regulators like GRP78, PERK, and eIF2α (125).  
Quercetin blocks airway epithelial cell chemokine expression though eIF2α phosphorylation (133).  
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Pterostilbene (PT), a natural analogue of resveratrol, inhibits hepatocellular cell (HCC) growth without 
the induction of apoptosis in an ER stress- and autophagy-dependent manner through the eIF2α pathway 
(135). Resveratrol modulates response against acute inflammatory stimuli in aged mouse brain. ER 
stress markers demonstrated significant changes in resveratrol-treated mice after LPS treatment, 
specifically in eIF2α (183). Other studies have found an effect of resveratrol on eIF2α (184, 185). 

Sulforaphane exerts a neuroprotective effect involving Nrf2-dependent reductions in oxidative stress, 
mTOR-dependent inhibition of neuronal apoptosis, and the restoration of normal autophagy (186). 
Sulforaphane also inhibits mTOR in an Nrf2-independent manner (136). 

Kimchi attenuates fatty streak formation in the aorta of low-density lipoprotein receptor knockout mice 
via the inhibition of ER stress (via several mechanisms including eIF2α) and apoptosis (187). Nutrients 
originating from Kimchi and its ingredients modulate the Nrf2/PERK signalling pathway to 
homeostasis in oxidative stress states. Kimchi and its bioactive compound ((3-4’-hydroxyl-3’,5’-
dimethoxyphenyl) propionic acid: HDMPPA), which is a metabolite result from fermentation, alleviate 
oxidative stress and inflammatory response not only via the Nrf2 pathway, but also via the PERK/CHOP 
pathway, which induced apoptosis of ER, in cardiovascular disease and ageing models (188-190). In 
addition, Arvelexin from Brassica rapa and anthocyanin-rich extract from red cabbage exert anti-
inflammatory properties by the inhibition of NF-kB activation and by Nrf2-regulated HO-1 induction 
in macrophages and apolipoprotein E-deficient mice (191, 192), suggesting that Nrf2 activation during 
inflammation antagonizes the NF-kB pathway. It is possible that the intake of Kimchi may help to 
mitigate COVID-19 outcomes by maintaining or restoring the Nrf2 system.  

4-3- AT1R 

Curcumin (61), EGCG (71), genistein (77, 78) and resveratrol (96) impact the AT1R pathway.  NADPH 
oxidases of the Nox family are important sources of ROS and important agents in hypertension. They 
increase blood pressure in the presence of Ang II, an important and potent regulator of cardiovascular 
NADPH oxidase, via AT1R. Several natural compounds such as berberine, curcumin, quercitine, 
resveratrol and others are Nox inhibitors (193). Dietary curcumin supplementation can increase 
antioxidant activity through the induction of heme oxygenase-1, a scavenger of free radicals, and 
through the reduction of reactive oxygen species and Nox-2 (194). Sulforaphane reduces Ang II-induced 
vascular smooth muscle cells through Nrf2 signalling (195). 

5- Complex interactions in oxidative stress    

IR induces oxidative stress either through the overproduction of superoxide by ER stress or the 
activation of Ang II-mediated upregulation of nicotinamide adenine dinucleotide phosphate (NADPH)-
oxidase (NOX) activity, resulting in the cytosolic production of ROS (196) (Figure 2). 

 

 

 

 



 11 

Figure 2: Complex interactions leading to oxidative stress in diabetes (from (196)) 

 

One of the key features of the complex interaction between nutrients and the oxidative 
stress/inflammatory response is the differential regulation of NFkB and Nrf2 by the cell redox status 
(197). Nrf2 and NFkb are present in an inactive form in the cytosol since they are linked to an inhibitory 
compound iNFkB or INrf2 (Keap 1), both targets of reactive oxygen species (198-200). In the case of a 
large production of ROS, which would overwhelm the antioxidant defence, iNFkB is oxidized and 
catabolized. Furthermore, NFkB is translocated to the nucleus and initiates the expression of 
inflammatory proteins such as cytokines, chemokines, adhesion molecules, cytokine receptors, iNO 
synthases, lipoxygenases, cyclooxygenases and growth factors …. (201, 202). Once produced, cytokines 
are able to activate oxidant production by the NADPH oxidase complex, leading to an oxidative burst, 
which could in turn enhance the NFkB activation. Thus, NFkB activation results in a directional and 
synergistic linkage of inflammation and oxidative stress (199, 203).  
 
The canonical pathway of Nrf2 activation also involves changes in the cell redox state (189). A weak or 
controlled ROS production results in the degradation of Keap 1. Thus, Nrf-2 could be translocated to 
the nucleus, binds to the antioxidant response element and activates an antioxidant enzyme such as 
Heme Oxigenase, SOD and catalase or cytoprotective genes (204, 205).  It could also reduce the 
production of ROS (206). The increase in antioxidant defence maintains or restores the cellular redox 
state. In addition, Nrf2 stimulation could downregulate NFkB activation (207, 208).  In fact, redox 
signalling appears as a black box, controlling both NrF2 and NfkB activation and thus regulating 
inflammation and reparation. It is now recognized that the regulation of both pathways, NfkB and Nrf2, 
in part linked to the redox status, involved a cross talk to bring a coordinated inflammatory response 
(209, 210). The intensity of the ROS insult could be a key factor in the imbalance of the NFkB/Nrf2 
system (211). In the case of oxidative stress, stimulation of NFkB (associated with a degradation of both 
Keap 1 and Nrf2) results in an amplification loop of inflammation. Thus, an imbalance between the 
NFkB and Nrf2 pathways has already been observed in T2D (195) or in multiple sclerosis. By contrast, 
an active and effective anti-oxidant system could result in a preventive loop leading to anti-oxidative 
and anti-inflammatory response. In this context, a positive modulation of Nrf2 by nutrients could act as 
an « oxidative pre-conditioning » system, and the resulting increase in the antioxidant enzyme could 
attenuate ROS deleterious effects and maintain cell integrity (212, 213). 
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This black box redox system could be effective in respiratory infection, particularly in COVID-19 (201). 
Indeed, COVID-19 activates RAAS and induces ER stress, resulting in ROS production (32, 33), which 
could be further enhanced by risk factors such as obesity, diabetes, and hypertension (214-216). 
Interestingly, RAAS activation seems related to COVID infection severity (39). If the ROS production 
overwhelms antioxidant defence, a vicious circle linking oxidative stress and inflammation is initiated 
leading to a cytokine storm, as well as lung and endothelial injury. On the other hand, if Nrf2 is activated 
via nutrients, the antioxidant response could maintain or restore an adequate redox status. This would 
lead to an antioxidant and anti-inflammatory response resulting in a pauci-symptomatic infection. 
Interestingly, very recently, a similar effect on the Nrf2/NfkB balance via redox signalling was 
hypothesized via ozone therapy (217).  

However, although the therapeutic potential of Nrf2 raised great hopes in the early 2010s (218), Nrf2 
levels vary significantly depending on the physiological and pathological context. Thus, a properly 
timed and targeted manipulation of the Nrf2 pathway is critical for an effective treatment (219). 
Surprisingly, only one Nrf2-based treatment has been approved: dimethyl fumarate (220), not devoid of 
side effects (221, 222). This suggests that the balance is difficult to reach in drug development. Nrf2 
overexpression may also be associated with diabetic nephropathy or retinopathy (196). Recently, well-
designed clinical trials with bardoxolone, an Nrf2 antagonist, were cancelled or stopped due to safety 
concerns (223). The Nrf2 system plays an important role in the body's natural defence against 
hyperglycaemia-induced damage. However, this initial adaptive response to counteract the diabetes-
driven oxidative stress appears to be short-lived, after which the Nrf2 system becomes overwhelmed 
under chronic glucose stimulation (196).   

6- Obesity, diet, Nrf2 and COVID-19 

In general, T2D and obesity prevalence are associated and the following has been stated by the NCD 
Risk Factor Collaboration (NCD-RisC) “The upsurge of T2D reflects the global obesity epidemic” 
(224). However, many countries in Sub-Saharan Africa or Eastern Asia have a very low obesity 
prevalence that is not necessarily associated with a low diabetes prevalence (Figure 3). These countries 
have the lowest obesity prevalence as well as the lowest COVID-19 death rates. Obesity is lower in 
Canada than in the US and this may partly explain differences in COVID-19 severity between these two 
countries. Obesity is high in South Africa, possibly explaining the higher death rate in this country than 
in other Sub-Saharan African countries. 

Many factors can explain this diabetes/obesity paradox. Genetic differences between countries are clear. 
However, the RODAM (Research on Obesity & Diabetes among African Migrants) study used a unique 
approach of comparing Ghanaians resident in the Netherlands, Germany, UK and Ghana to unravel the 
causes of obesity and T2D among African migrants and non-migrants. It showed striking differences 
suggesting that environmental factors are of great importance. Globally, one in 10 individuals is affected 
by T2D. In migrants, there is a higher T2D prevalence, the age of onset is younger and complications 
are more severe. One of the main determinants of T2D is obesity, which also disproportionally affects 
migrants (225-228). In rural Ghanaians, most T2D is independent of obesity (229) (Figure 4). 
Differences in food preferences were found across study sites: (i) in rural Ghana, diet concentrated on 
starchy foods (“roots, tubers, and plantain” diet) including cassava, (ii) in urban Ghana, nutrition was 
dominated by animal-based products, and (iii) in Europe, diet was highly diverse (230).  The “roots, 
tubers, and plantain” diet was directly associated with increased 10-year cardiovascular disease risk 
(231) but the relationship between diet and T2D was unclear (232). In the national Korean cohort, 
obesity (50.4%) and abdominal obesity (47.8%) are associated with diabetes (233). 
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In COVID-19, obesity is a more severe risk factor than T2D (234). There is a dose-dependent association 
of obesity with worse COVID-19 morbidity requiring hospitalization and intensive care and with 
mortality. This particularly applies to patients younger than 50 to 60 years of age (235). Obesity is an 
important independent risk factor for serious COVID-19 disease (236, 237). The association between 
BMI and COVID-19-related mortality was U-shaped, both in type 1 diabetes and in T2D (lowest risk 
for those with a BMI of 25·0-29·9 kg/m2) (238). These data suggest differences between these two 
features of the metabolic syndrome for COVID-19 severity. 

Figure 3: Prevalence of obesity, diabetes (NCD Risk Factor Collaboration (NCD-RisC, http://ncdrisc.org) 
and the COVID-19 death rate (Johns Hopkins Coronavirus Resource Center, 
https://coronavirus.jhu.edu)   
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Figure 4: Links between obesity and diabetes in Ghanaians (229) 

 

Nrf2 is also involved in complications of Type-1 diabetes (239). All nine Nrf2-interacting nutrients had 
an effect against obesity, often through IR (55, 56, 62, 63, 79, 84, 85, 102, 240, 241) (Table 2). In 
addition, Nrf2 may improve adipogenesis and adipocyte differentiation (242). Thus, diet may be 
important in the prevention/management of obesity and, at the same time, may reduce the impact of 
COVID-19. 

7- Conclusions 

Interestingly, all nutrients tested had a similar effect on IR, cytokine storm, lung injury and endothelial 
damage. They were all active on most of the tested Nrf2 pathways. These data strongly suggest a 
common mechanism of action for all nutrients. These effects appear to be highly conserved (243). 
However, we need to understand the differences between obesity and T2D in some countries with low 
obesity prevalence. These mechanisms may help to better appraise COVID-19 (Figure 5). 

It is tempting to propose that Nrf2-interacting foods and nutrients can help re-balance IR, and that they 
can have a significant effect on COVID-19 severity, and possibly also on susceptibility to infection by 
SARS-CoV-2. It is therefore possible that an increasing intake of specific foods may achieve an optimal 
natural balance for the Nrf2 pathway, since COVID-19 death rates, used as a proxy of severity, are low 
or very low in some countries where Nrf2-interacting nutrients are largely used (Figure 5). 
Understanding the balance between Nrf2-interacting foods and nutrients would help to: (i) better 
understand the mechanisms of the oxidative stress in the IR diseases, (ii) develop optimal Nrf2-
interacting nutrients and diets to reduce the prevalence and severity of IR diseases, (iii) optimize Nrf2 
drug development and (iv) develop these strategies to mitigate COVID-19 severity.  
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Figure 5: Geographic differences in COVID-19 death rates (Johns Hopkins Coronavirus center) and 
diet possibly explaining these differences 

 

There are still many unresolved questions requesting research on the time of onset of any efficacy of 
foods in COVID-19, the amount of the food to be administered and the interactions with the microbiome. 
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