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Abstract 
 

In this paper, we propose that COVID-19 morbidity may be associated with TRPA1 (transient receptor 
potential ankyrin 1). TRPA1 induces inflammation, plays key roles in the physiology of almost all 
organs. It may augment sensory or vagal nerve discharges to evoke pain and several symptoms of 
COVID-19 including cough, nasal obstruction, vomiting, diarrhea and partly agueusia and anosmia. 
TRPA1 can be activated by ROS and may therefore be upregulated in COVID-19. TRPA1 can be 
activated by pungent compounds including many Nrf2-interacting foods. Interactions between Nrf2-
associated nutrients and TRPA1 may be partly responsible for some COVID-19 symptoms. Regulation 
by Nrf2 is still unclear. In COVID-19, it is proposed that rapid desensitization of TRAP1 by some foods 
could reduce symptom severity and could provide new therapeutic strategies. 
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Introduction 

The transient receptor potential (TP) vanilloid 1(TRPV1) and ankyrin 1 (TRPA1) are members of the 
TRP superfamily of structurally-related, non-selective cation channels. TRPV1 and TRPA1 are 
frequently co-localized in sensory neurons, and interact to modulate function. They are also expressed 
in  many non-neuronal cells such as vascular smooth muscle, monocytes, lymphocytes, keratinocytes, 
epithelial cells and endothelium 1.  

TRPA1, an excitatory ion channel originally found as the receptor of mustard oil in sensory neurons 2, 
plays a pivotal role in detecting cysteine-reactive irritants and in augmenting sensory or vagal nerve 
discharges to evoke pain and cough. TRPA1 induces inflammation, plays key roles in the physiology of 
almost all organs3 and exhibits the highest sensitivity of TRPs to oxidants. TRPA1 can be activated by 
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cold, heat, pungent compounds, mechanical stimuli, endogenous signals of inflammation and oxidative 
stress 4. Its function is modulated by multiple factors, including Ca2+, trace metals, pH, reactive oxygen 
species (ROS), nitrogen, and carbonyl species. A major function of TRPV1 is the detection and 
regulation of body temperature 5. 

There have been large country variations in COVID-19 death rates. Some very low death rate settings 
such as those of Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating 
large quantities of fermented vegetables whose intake is associated with activation of the Nrf2 (Nuclear 
factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor 6-8. There are many Nrf2-interacting 
nutrients 9 (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, 
sulforaphane) that act similarly to reduce insulin resistance, endothelial damage, lung injury and 
cytokine storm (Bousquet et al., submitted). It has been proposed that Nrf2-interacting foods and 
nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity 8,10-12. 
However other mechanism may also be involved. 

In this paper, we examined whether (i) COVID-19 morbidity may be associated with TRPA1; (ii) 
TRPA1 may be involved in COVID-19 risk factors (obesity and diabetes), lung injury and endothelial 
damage; (iii) TRPV1 may be associated to TRAP1 in COVID-19; (iv)  Nrf2, the most potent antioxidant 
system of the human body, may regulate TRPA1; (v) Nrf2-interacting nutrients are acting on TRPA1 
and (vi) the results of three experimental clinical cases treated with broccoli capsules containing 
glucoraphanin that may be explained by TRPA1.   

1- COVID-19 and TRPA1 

1.1. COVID-19 symptoms 

Several COVID-19 symptoms are associated with TRPA1.  

COVID-19 is often associated with myalgia, back pain, widespread hyperalgesia and headache 13,14. 
TRPA1 is involved in acute and chronic pain, and in migraine 3. It may therefore be partly involved in 
some of the COVID-19 symptoms. 

Cough is a major COVID-19 symptom 15 but is not necessarily associated with severity. TRPA1 is 
abundantly expressed on the innervations of the entire respiratory tract including the C-fibers of the 
trigeminal and vagal ganglia as well as the nasal, tracheal, bronchial and alveolar epithelial cells, 
bronchial smooth muscle cells and CD4+ T cells 16. C-fibers largely “sense” the presence of potentially 
toxic inhaled irritants and toxicants. TRPA1 is a key contributor to cough 17,18. TRPA1 represents a 
gateway to airway irritation and reflex responses induced by inhaled oxidants 19 and tobacco smoking 
20. However, both TRPA1 and TRPV1 mediate cigarette smoke-induced damage of the bronchial and 
alveolar epithelial cells via modulation of oxidative stress, inflammation and mitochondrial damage 21. 
This suggests a complex regulatory role of TRAP1 in acute and chronic airway inflammation 22.   

Smell and taste disorders are very common in COVID-19 13,23-25. TRPA1 is one of the TRP channels 
involved in nociception and is excited by pungent odorous substances. Associations have been observed 
between TRPA1 genetic variants and increased sensitivity to thermal pain stimuli or increased olfactory 
sensitivity 26. The intranasal trigeminal system is a third chemical sense in addition to olfaction and 
gustation. In the nasal cavity, high levels of trigeminal receptor expression were found for TRPV1 and 
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TRPA1 27.  The sensitivity of the intranasal trigeminal system to chemicals was found to be partly 
mediated by TRPA128.   

The mammalian taste system consists of taste buds found throughout the oral cavity. TRPs fall into six 
subfamilies: TRPC for "canonical" (TRPC1-7), TRPM for "melastatin" (TRPM1-8), TRPA1, TRPV1-
6, TRPML for "mucolipin" (TRPML1-3), and TRPP for "polycystin" (TRPP2, TRPP3, TRPP5). These 
TRP channels are important in gustatory processing. They are very sensitive to changes in temperature, 
and are activated by many compounds found in plants, often used as spices 29. TRPA1 is mostly an acid-
sensing and epithelial sodium channel 30 whereas TRVP1 is also sensitive to temperature. TRPA1 
activators are generally recognized as noxious. However, foods and beverages containing TRPA1 
activators are preferably consumed.   

Loss of appetite is common 31 and may be severe in COVID-19. TRPA1 is proposed to play a role in 
food intake and satiety 32-35. In animals, TRPA1 activation increases appetite 36.   

Nasal obstruction alone is relatively common in COVID-19. In two studies, nasal obstruction was 
frequently reported but not correlated with olfactory dysfunction 37,38. In rhinitis, nasal itch is related to 
TRPV1 39. Patients suffering from rhinitis exhibit a decreased threshold to the TRPA1 agonist allyl 
isothiocyanate (AITC). This correlates with symptoms and is resolved, in animals, after chemical 
destruction of the nasal sensory nerves 40-42.  

Nausea, vomiting or diarrhea are relatively common symptoms of COVID-19 31. TRPA1 is expressed 
in both dorsal root ganglions and nodose ganglion neurons innervating the stomach as well as in nerve 
fibers of the gastric wall. Gastric administration of garlic powder containing the TRPA1-agonist allicin 
induces specific epigastric symptoms and gastric relaxation in healthy subjects 43. 

Some other COVID-19 symptoms like fever or fatigue appear less likely to be associated with TRPA1. 

1.2. COVID-19 risk factors and TRPA1 

Obesity and, to a lesser extent, diabetes are risk factors for COVID-19. The importance of TRPA1 on 
the metabolic syndrome, obesity and diabetes is usually indirect using agonists that have multiple 
actions. Animal models are of importance for a more precise assessment of the mechanisms 44  45. 

TRPV1 and TRPA1 have been associated with control of weight, pancreatic function, hormone 
secretion, thermogenesis, and neuronal function. This suggests a potential therapeutic value of these 
channels in obesity and diabetes 46,47.  Recently, a structurally similar molecule to cinnamaldehyde, 
cuminaldehyde, a TRPA1 agonist, was found to possess anti-obesity and anti-hyperglycemic properties 
and to activate TRPA148.    

Cinnamaldehyde (in cinnamon) has a future potential in the treatment of diabetes and its complications 
49. A garlic supplement plays positive and sustained roles in blood glucose, total cholesterol, and in 
high/low density lipoprotein regulation in the management of diabetes 50. However, these effects can be 
mediated by multiple pathways. As an example, cinnamaldehyde exerts its effects through its action on 
many multiple signalling pathways 47 including TRPA1-ghrelin 51  and Nrf2.   
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1.3. Lung injury 

TRP ion channels are involved in lung injury. In mouse acute lung injury models, the bacterial endotoxin 
lipopolysaccharide (LPS) involves both TRPV1 and TRPA1 22,52. Ventilator-induced lung injury 
contributes to the mortality in patients with acute lung injury by increasing inflammation. In a rat model 
of ventilator-induced lung injury, a TRPA1 inhibitor significantly reduced inflammation in the lung 
tissues and the generation of reactive oxygen species (ROS) 53. Unsaturated aldehydes generated during 
incomplete combustion - such as acroleine - are highly toxic for the lungs. TRPA1 protects against high-
level acrolein-induced toxicity in mice. Mice treated with a TRPA1 antagonist were significantly 
protected from acrolein-induced mortality 54. 

1.4. Endothelium 

TRPA1 present in perivascular nerves mediates the vasodilatation of peripheral arteries in response to 
chemical agonists. TRPA1 is expressed in the endothelium of blood vessels exclusively in the cerebral 
vasculature, where its activation produces a localized Ca2+ signal that results in dilation of the cerebral 
arteries 55,56. 

The endothelium is linked to the causes of some cardiovascular diseases. The activation of TRPA1 has 
a positive effect on atherosclerosis, but a negative effect on myocardial fibrosis and heart failure 57. 

2. Interactions between TRPA1 and TRPV1 

Capsaicin, the best studied TRPV1 agonist, induces cough 17,58. It may be an option for the treatment of 
non-allergic rhinitis 59. Acute respiratory distress syndrome (ARDS) is one of the major causes of 
mortality associated with COVID-19. It has been proposed that morbidity, severity of the disease, and 
underlying physiological events leading to mortality are closely linked to the TRPV1 expressing 
neuronal system (afferent/efferent neurons) in the lungs 60. Capsaicin is also partly involved in smell 
and taste 61. TRVP1 and TRPV4 are involved in pulmonary chemical injuries 62. 

TRPA1 and TRPV1 receptors are co-expressed in vagal pulmonary C-fiber sensory nerves. The 
simultaneous activations of TRPA1 and TRPV1 by their respective selective agonists was far more 
effective than single agonists alone 63. In a mouse model, liquiritin, a novel inhibitor of TRPV1 and 
TRPA1, protects against LPS-induced acute lung injury 52. 

3. TRPA1 and Nrf2   

3.1. TPRA1 is a sensory receptor for multiple products of oxidative stress 

Oxidative stress, characterized by an imbalance between oxidants and antioxidants in favour of oxidants, 
leads to the disruption of redox signalling and physiological function. Redox signalling-induced changes 
are performed by ROS and reactive nitrogen species (RNS) 66. ROS is a collective term that includes 
superoxide (O2

▪−), hydrogen peroxide (H2O2), hydroxyl radical (OH▪), singlet oxygen (1O2), peroxyl 
radical (LOO▪), alkoxyl radical (LO▪), lipid hydroperoxide (LOOH), peroxynitrite (ONOO−), 
hypochlorous acid (HOCl), and ozone (O3), among others 67. 

TRPA1 also functions as a sensor activated by ROS and modulated when intracellular changes in oxygen 
levels occur. Multiple agents produced during oxidative stress can activate TRPA1 expressed in sensory 
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neurons 68. Besides ROS, TRPA1 channels are also activated by RNS, including nitric oxide (NO) 69. 
Although many studies have been performed, the relevance of TRPA1 activation for cell signalling in 
oxidative stress is still unclear 70.  

In the upper and lower airways, TRPA1 found in vagal sensory endings responsive to hypoxic   
conditions may serve as a rapid alarm system during abnormal oxidative conditions 70. 

3.2. Nrf2 

The nuclear factor erythroid 2-related factor 2 (Nrf2) is the major regulator of cellular resistance to 
oxidants. Nrf2 is mainly regulated by the Kelch-like ECH-associated protein 1 (Keap1). Nrf2 activation, 
through the canonical mechanism, is carried out by electrophilic compounds and oxidative stress, where 
some cysteine residues in Keap1 are oxidized. This results in a decrease in Nrf2 ubiquitination and an 
increase in its nuclear translocation and activation. In the nucleus, Nrf2 induces a variety of genes 
involved in the antioxidant defense 71. It is possible that Nrf2 plays a major role in the modulation of 
TRPA1 by ROS.   

3.3. Interactions between Nrf2 and TRPA1 

There are few studies assessing the interactions between Nrf2 and TRPA1, and their results are 
sometimes conflicting. Specific signalling pathways of lung ischemia-reperfusion injury impair Nrf2-
antioxidant response and activate oxidative stress in the brainstem, thereby leading to the amplification 
of TRPA1, likely via ROS 72. Polysulfides (H2Sn) occur in the brain, activate TRPA1 and facilitate the 
translocation of Nrf2 73. The ablation of TRPA1 exacerbates the infiltration of activated macrophages, 
renal inflammation, and renal injury in mice after ischemic reperfusion injury 74. In different animal 
models, neuroprotection has been observed and associated with the activation of the Nrf2 pathway via 
antioxidative signalling pathways 75-78. A neuronal redox-sensing Ca2+-influx channel, overexpressed in 
human cancer, upregulates Ca2+-dependent anti-apoptotic pathways to promote ROS resistance. Nrf2 
directly controls TRPA1 expression, thus providing an orthogonal mechanism for protection against 
oxidative stress together with canonical ROS-neutralizing mechanisms 79. 

4. Activation and desensitization of TRPA1 

4.1. Neurotropism of SARS-CoV-2 

Coronaviruses are neurotropic. The expression of ACE2 in human neurons supports the neuro-invasive 
potential of SARS-Cov-2 80. In a human induced pluripotent stem cell (iPSC)-derived BrainSphere 
model, ACE2 was detected and SARS-Cov-2 was found to replicate 81.  In an animal study assessing 
olfactory damage, ACE2 and the protease TMPRSS2 were expressed in the sustentacular cells of the 
olfactory epithelium, but much less in most of the olfactory receptor neurons 82. These results propose 
a dual model: direct viral invasion or a bystander injury after the infection of epithelial/endothelial cells 
83. 

4.2. Many Nrf2-interacting nutrients are TRPA1 agonists 

Several Nrf2-interacting nutrients are direct TRPA1 activators 84. These include some allyl 
isothiocyanates (pungent components of mustard, horseradish, and wasabi 2), cinnamaldehyde 
from cinnamon 47, allicin (an organosulfur compound from garlic) 85, green tea polyphenols 86,87 and 
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three glucosinolates from Sisymbrium officinale (isopropylisothiocyanate and 2-buthylisothiocyanate)  
or moringin (4-[(α-l- rhamnosyloxy)benzyl]isothiocyanate) 88 89. Sulforaphane, an allyl isothiocyanate, 
does not appear to interact with TRPA1 but it might not have been tested adequately. 

The plant polyphenol resveratrol 90 may have an agonist or antagonist effect 91. An indirect agonist effect 
92 was found via the N-methyl-D-aspartate receptor (NMDA) in vivo 93. TRPA1 may serve as a 
downstream target of pro-nociceptive ion channels such as NMDA receptors 94. 

There is a substantial overlapping of electrophilic ligands between TRPA1 and Nrf2. This suggests 
that the two systems might be part of the same network, with TRPA1 representing the sensory arm, 
and Nrf2 its biochemical counterpart 84. However, not all Nrf2-interacting nutrients are activators of 
TRPA1 and mustard oil is not interacting with Nrf2. 

4.3. Desensitization of TRP 

The pungent effect of chili and other spices is rapidly reduced by high doses or by repeated doses 84. This 
was first described for capsaicin, an active component of chili peppers 95. The TRPV1 receptors begin 
a refractory state commonly termed as desensitization that leads to the inhibition of receptor function 
84.   The 'acute desensitization' of TRVP1 accounts for most of the reduction in responsiveness occurring 
within the first few (~20) seconds after the vanilloids are administered to the cell for the first time. 
Another form of desensitization is 'tachyphylaxis', which is a reduction in the response to repeated 
applications of vanilloid 96. 

TRPA1 is desensitized by homologous (mustard oil; a TRPA1 agonist) or heterologous (capsaicin; a 
TRPV1 agonist) agonists via Ca2+-independent and Ca2+-dependent pathways in the sensory 
neurons 97. There is a heterologous desensitization of TRPA1 via a TRPV1 pathway 98,99. Resveratrol or 
AITC act as activators and desensitizers of TRPA1 channels 100. Benzene metabolites - hydroquinone 
and benzoquinone - are highly reactive molecules producing ROS and causing oxidative stress. High 
concentrations of para-benzoquinone caused rapid activation of TRAP1 followed by a fast decline in a 
cysteine-dependent desensitization mechanism 101. The contractile effect of TRAP1 in isolated mouse 
intestine can be induced by AITC. Repeated doses induce desensitization 102. The electrophilic fatty acid 
NO2-OA acts on TRP channels to initially depolarize and induce firing in sensory neurons followed by 
desensitization and suppression of firing 103. NO2-OA attenuates intracellular oxidative stress through 
Nrf2 and suppression of NADPH oxidase 104.  

Although data are sometimes conflicting, interactions between TRPA1 and TRPV1 can modulate 
receptor desentization. Using patch-clamp electrophysiology, the co-expression and interaction 
of TRPA1 with TRPV1 proved to be the most critical for differential sensitization of sensory neurons 
for pain 105. On the other hand, selective TRPA1 agonist (AITC) resulted in restoration of sensitivity to 
capsaicin TRPV1 channels (resensitization TRPV1 channels) 106.   Attenuation of experimental colitis 
by capsazepine (capsaicin-induced denervation CPZ) - attributed to its antagonistic action on TRPV1 - 
exerts its anti-inflammatory effects via profound desensitization of TRPA1 107.  

Nicotine activates TRAP1 108. The prevalence of smoking among hospitalized COVID-19 patients is 
low 109. Although many different mechanisms are proposed, the desensitization of TRAP1 by nicotine 
may be one possibility. If this were the case, it would show that TRAP1 may be involved in severe 
COVID-19. 
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Sensory receptors like TRPA1 may serve as a gate-keeper in optimizing spice intake, thereby avoiding 
over-exposure and exemplifying the sensory and metabolic interactions of spicy nutraceuticals. In this 
scenario, desensitization might be an attempt in maintaining optimal intake of pungent compounds in 
spite of priming of the metabolising enzymes and a substantial higher and/or faster inactivation by 
metabolisation 84. We propose that electrophilic ligands activate and desensitize TRAP1 and also 
activate Nrf2 that will reduce the activation of TRPA1 by the ROS produced by COVID-19. 

4.4. TRPA1 and acetaminophen 

Paracetamol (acetaminophen) has TRPA1-independent antipyretic effects 110 and TRPA1-dependent 
effects on pain 111.  The electrophilic metabolites N-acetyl-p-benzoquinoneimine (NAPQI, hepatotoxic 
metabolite) and p-benzoquinone, but not paracetamol itself, activate TRPA1 68. NAPQI also directly 
activates Nrf2 112, and benzoquinone desensitizes TRPA1 101. The physiological and toxicological 
responses of paracetamol form a continuum coordinated by the Wnt and Nrf2 pathways. Therapeutic 
doses produce reactive ROS and NAPQI in the cytoplasm but result in little permanent damage 113.  At 
high doses, paracetamol can induce oxidative stress-mediated hepatotoxicity which is reduced by 
enhancing the Nrf2 pathway 114-116. 

6. Rapid onset of Nrf2-interacting nutrients on COVID-19 symptoms  

Broccoli seeds containing glucoraphanin capsules were tested in three experimental clinical cases of 
COVID-19. The first clinical case describes COVID-19 in a patient who has proposed the hypothesis of 
Nrf2-interacting nutrients in the prevention of severe COVID-19 symptoms. Capsules of broccoli were 
being taken before the onset of SARS-CoV-2 infection and were ineffective in its prevention. They were 
continued daily for over a month after the first COVID-19 symptoms. They were found to reduce most 
of the symptoms rapidly and for a duration of 6-8 hours by repeated dosing. When the patient was stable 
but still suffering from cough and nasal obstruction when not taking the broccoli capsules, a double-
blind induced cough challenge was carried out to assess the speed of onset of the broccoli capsules (less 
than 10 minutes). A second clinical case with lower broccoli doses carried out during the cytokine storm 
confirmed the clinical benefits already observed. A third clinical case at the onset of COVID-19 
symptoms showed similar effects. In the first clinical trial, a dose of under 600 micromoles per day of 
glucoraphanin was used, and trials with doses of up to 800 micromoles daily have been reported. 
However, such a high dose may induce some pharmacologic effects that must be investigated carefully 
before any study is carried out. Thus, these experimental clinical cases represent a proof-of-concept to 
confirm the hypothesis that Nrf2-interacting and TRPA1-agonist nutrients are effective in COVID-19. 
However, they cannot be used in practice before more safety data are available, and should be confirmed 
by proper trials on efficacy and safety. However, the detailed analysis of the cases supports TRPA1 
involvement. 

1- In the 3 patients, and for all ingestions of 300 mg broccoli capsules (N=46), cough (N = 39/43, 
90.7%) and nasal obstruction (N = 33/38, 86.8 %) disappeared within ten minutes, and often earlier. 
When there was nausea, it also disappeared immediately. These rapid effects suggest TRAP1 
desensitization.  

2- There was only a small rapid effect on fever which does not appear to be associated to TPRA1. 
3- The effect on fatigue was clear in the first case when higher doses were given at the beginning of 

the survey.  
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4- Before ingesting the broccoli capsules, anosmia and an almost complete loss of taste were observed 
in cases 2 and 3. After the first ingestion of broccoli, these symptoms were reduced variably and 
often delayed by one to 3 hours. The role of TRPA1 is unclear. 

5- Cough and fever re-occurred after 6-8 hours in 43/46 the three patients. This was often associated 
with nasal obstruction (N = 38/46, 82.6%) and fatigue (N = 25/46, 54.3%).  

6- In the 3 patients, paracetamol (250 to 1,000 mg) always increased the duration of the effect of 
broccoli to up to 12 hours. This effect is in line with the activation of TRPA1 by paracetamol 
metabolites. 

7- Several challenges were performed in the first patient. They consisted of induced cough: the patient 
took the deepest breath he could, and then exhaled as fast and as hard as possible to induce cough. 
In 16 open challenges and 8 double-blind, placebo-controlled challenges, broccoli capsules 
reversed nasal congestion within 2 minutes and cough within 8 minutes. It is likely that 
tracheobronchial receptors were primed by the cough challenge and that it took longer to reduce 
cough than during COVID-19. The effect persisted for 6 to 8 hours. These rapid onset effects 
suggest TRPA1 desensitization.  

8- In open cough challenges, paracetamol increased the benefits to 10-12 hours, suggesting TRPA1 
desensitization. 

9- In open cough challenges with Nrf2-interacting nutrients, green tea (N=4) had a similar effect as 
broccoli but was shorter (1 hour). Resveratrol (N=4) had an effect on both cough and nasal 
obstruction from between 30-45 minutes to 4-5 hours. Berberine (N=3) did not have any effect. 
Green tea is a TRPA1 agonist, resveratrol indirectly activates TRPA1, whereas berberine has no 
published effect on TRPA1. These challenges indicate that the effect on TRPA1 is more important 
than on Nrf2. However, Nrf2 may block the activation of TRPA1 by ROS produced by COVID-
19 and allow for a longer effect, even during the challenge. 

Conclusions 

Hypothetic interactions of Nrf2, TRPA1 and COVID-19 (Figure 1) 

A common denominator in all conditions associated with COVID-19 appears to be the impaired redox 
homeostasis responsible for ROS accumulation 117. Several mechanisms have been proposed involving, 
among others, the renin–angiotensin–aldosterone system (RAAS) 8 and/or endoplasmic reticulum stress 
118. These hypotheses have led to propose antioxidant approaches including Nrf2 to treat COVID-19 8,10-

12. Antioxidants may be of interest but the clinical benefits should probably take some time, and this 
mechanism may be more related to medium-term treatment.  

However, other hypotheses can also be proposed. TRPA1 is involved in several COVID-19 symptoms 
including cough, and loss of taste and smell. It can be activated by ROS and may therefore be 
upregulated in COVID-19. Nrf2 was found in a few studies to interact with TRPA1. Reducing ROS will 
most likely reduce TRPA1 hyperreactivity, thereby reducing TRPA1 activation by exogenous or 
endogenous agents. However, such a mechanism is likely to take time and cannot be involved in rapid 
onset clinical benefits. 

The activation of TRPA1 by exogenous agents can lead to a rapid dose-dependent desensitization that 
may be effective within minutes for a few hours. This rapid onset mechanism may be sustained by 
antioxidants or other products. 
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Finally, as found for TPRV1 and capsaicin tachyphylaxis 96, a reduction in the response to repeated 
exposure may occur during long-term treatment. In this model, Nrf2 and antioxidants may play an 
important additive role in reducing ROS. This may be the case for low-death rate countries in which 
large amounts of nutrients interacting with Nrf2 and TRPA1 at the same time are consumed. The long-
term consumption of kimchi, which contains pungent nutrients and fermented cabbage, could be the 
prototype. 

There are several unknown issues. Two of them are the interplay between TRPA1 and TRPV1 in 
desensitization. The second is the regulation of these channels by oxidative stress and the role of Nrf2.  

Figure 1: Interactions between TRPA1, endogenous and exogenous stimuli 
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